Description
Data products derive their value from data and generate new data in return; as a result, machine learning techniques must be applied to their architecture and their development. Machine learning fits models to make predictions on unknown inputs and must be generalizable and adaptable. As such, fitted models cannot exist in isolation; they must be operationalized and user facing so that applications can benefit from the new data, respond to it, and feed it back in to the data product. Data product architectures are therefore life cycles and understanding the data product life cycle will enable architects to develop robust, failure free workflows and applications. In this talk we will discuss the data product life cycle, explore how to engage a model build, evaluation, and selection phase with an operation and interaction phase. Following the lambda architecture, we will investigate wrapping a central computational store for speed and querying, as well as incorporating a discussion of monitoring, management, and data exploration for hypothesis driven development. From web applications to big data appliances; this architecture serves as a blueprint for handling data services of all sizes!